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ABSTRACT

Recent genomic analyses on the cellular metabolic netwookvghat reaction flux
across enzymes are diverse and exhibit scale-free behavits distribution. Con-
sidering the roles played by main arteries or principal higys, one may guess that
the reactions with larger fluxes are more likely to be lethader the blockade of its
catalyzing gene products or gene knockouts. However, we Iinth silico flux analy-
sis, that the lethality rarely has correlations with the flenel owing to the widespread
backup pathways innate in the genome-wide metabolisiasdfierichia coli. Lethal
reactions, of which the deletion generates cascadingéadfifollowing reactions up to
the biomass reaction, are identified in terms of the Booleawark scheme as well as
the flux balance analysis, where the avalanche size, thebdisbn of which follows a
power law, turns out to be a useful measure of lethality. Evdre single deletion itself
may not lead to the fatal results, simultaneous removal of d&wmore reactions can
cause the failure of the biomass reaction, for which we atltegpterm synthetic lethality
as a metabolic homologue of the same situation in gene knbskadies. Identification
of synthetic lethals in genome-wide metabolism provides\eehway to improve our un-
derstanding of essential biochemical reaction processetheir functionally redundant
pathways, which is of potential applications to metabatigiaeering.



Complex machinery of cellular metabolism occurring in angzorganism makes up a
part of autocatalytic network of biochemical reaction pediis. The reactions are cat-
alyzed by enzymes, functional proteins, and/or cofactdngchy again, are produced
through the reaction network responsible for sustainifey Though the network of in-
tracellular reaction constitutes an intricate web of patysvinterfering with each other,
molecular level description of metabolism has been maiakgped on the specific path-
way basis, such as glycolysis/gluconeogenesis, citrale gnd other catabolic/anabolic
reaction pathways. Only recently, advances in high-thinpud) experiments and the
computing power incorporating diverse data sets colleictggnomic research make it
possible to construct cellular networks of metabolisrmaidgransduction, genetic regu-
lations, and protein-protein interactions in genome-vgdespectives. At the same time,
many quantitative theoretical methods including graploties and other mathematical
tools developed from diverse disciplines attract muchétte to tackle the large-scale
networks.

In the early graph-theoretic approaches to the metabaolwork, attention has been
paid to the so-called scale-free feature of topologicalstire [1], small-world-ness]2],
modularity [3] and hierarchical organizatiod [4]. Despite immanent specificity in
cellular functions of various organisms, the connectpjotynumber of connections each
node (metabolite or associated reactions) has, is gepdaalfrom homogeneous. In
particular, this connectivity distribution of the metaisahetwork, as shared by many
naturally occurring complex networks, follows a power lavganing large deviations in
spite of well defined average value. Itis this context thatdogs the ternscale-free net-
work, where hubs, nodes with large number of connectiory, bsential roles. When
such hubs are removed or turned off, the whole system becwutesrable. Indeed,
it was found [5] that, for the yeast protein interaction netky hub proteins are more
likely to be lethal than the others.

In the framework of networks, metabolic reactions and pgditing metabolites can
be mapped into alternating nodes, where the outward(inwamdnections from a re-
action node indicate that those metabolites are produced(tned) as a result of the
reaction. Once constructing a directed bipartite grapthis way, we calculate graph-
theoretic quantities that characterize the global topplagd give a clue to assessing
lethality of metabolic reactions. Then, we study the puttiorrelations between the
metabolic flux level and the lethality of each metabolic tearcusing the flux balance
analysis(FBA)[[6]. Here, by lethal, we mean the organismidoarely synthesize the
indispensable biomass, or the flux of the biomass reactisigisficantly reduced when
that reaction is blocked or removed from the network, minmglgene knockout exper-
iments. One of our main results, obviously counterinteitivan be phrased as super-
highway is no more lethal than sideways. It is related with fdct that the high-flux
reactions have abundant bypasses or backup pathways.

We also introduce the Boolean network scheme, an idealizafithe metabolic net-
work as a wiring of binary logic gates to elucidate the pathstaucture of the network



on the logical basis. Considering the knockout and consequascading failure in the
metabolic reaction network as an avalanche, we investigatdistribution of avalanche
sizes to find it a unique measure of lethality. The distrimutalso follows a power
law with the characteristic exponent around 2.5, pervaix@ughout disparate model
systems having self-organized criticality [7].

In the latter part, we study thsgnthetic lethality, the effects of simultaneous multiple
knockout. A pair of genes or reactions catalyzed by theileganoducts can be collec-
tively lethal when they are removed simultaneously fromrtegvork, which manifests
that the two reactions are responsible for the same funotigathway, or complemen-
tary in the sense that one takes place of the other otheriése. sSynthetically lethal
reaction pairs show strong correlations between lethaliy their avalanche size, and
are distributed over distinct pathways, reflecting deepegarglement implicit in the
global network.

Materials and Methods

We use, with minor curation, the recent revisionro$ilico modelE. coli [8], which was
obtained by searching databases, such as LIGAND (httpw\genome.|p/kegg/ligand.html),
EcoCyc (http://www.ecocyc.org), TC-DB (http://tcdb.dosdu/), and referring to up-
dated literatures on sequence annotation [9]. To mimicoandr targeted mutation
strains, a specific reaction is removed from the network hadésultant metabolic ca-
pabilities are to be assessed. For this purpose, we intecalsingle pivotal reaction, the
biomass reaction, originally formulated as a linear coratom of essential metabolic
reactions giving rise to the growth of the organisml [10]. dughout the study, lethality
of a certain reaction or corresponding gene products igméted by the flux of this
biomass production, which is contingent to the ansatz ahwity that the selection
pressure has imposed in the long history of evolution.

Metabolic Network as a Graph. The overall map of metabolic reactions we study is a
bipartite graph, composed of two different types of nod2g,etabolites and their par-
ticipating 1074 metabolic reactions including transpord @xchange events. One type
of nodes connect only to the other type of nodes in the netstoikach link between
a pair of a metabolite and a reaction is directed, reflectiegmetabolite is either con-
sumed (substrate) or produced (product) or both in reastiOnhthe 1074 reactions, 254
reversible reactions are decomposed into two separateaescatalyzed by the same
enzyme. 627 distinct metabolites have either their inthalee or extracellular version
or both, which sum into 761 distinct nodes of metabolitesc&tme metabolic network
is reconstructed as a graph, we quantify, by various numlerieasures, the lethality of
each node in the wild-type strain and compare them with tbb&aockout mutants.

Depending upon the objectives, it can be projected to redbessingle-mode metabolite network or
reaction (enzyme) network.
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Flux Balance Analysis (FBA). For each metabolite in the metabolic reaction network,
dynamic flux balance condition on the concentratigrcan be written as
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whereg; is the corresponding reaction rate (outward flux), ahdare stoichiometric
coefficients involved in the metabolitec {1,2,---,m} participating in the reaction
Jj € {1,2,---,n} including transport and exchange reactions also. As amalige
to yet intractable kinetic models in genome-wide perspestimass conservation can
be applied in the balanced state to give the stationary u’oncﬁjj Si;i¢; = 0 for all 7.
Stoichiometric matrix encodes the topology of the metahwditwork and gives how the
complex reactions are entangled with one another. Oncedieh®metric coefficients
are given for all reactions, we have, in general, underrdeted situationf: < n)
where huge degeneracy in the null space of BHg. (1) is unabl@dActually, this multi-
plicity in the feasible metabolic state can be considereaifastation of the capability
of a metabolic genotype. It makes physiological sense ih ¢bHs are expected to
adapt themselves responding to different stresses andlgommditions. Among those
feasible metabolic phenotypes, FBA assumes the existdnggtinized point(s) of a
certain objective function, called biomass reaction omghoflux, by utilizing further
constraints based on the thermodynamic irreversibilityeattions.

The Boolean Network. Metabolic reactions or genetic switches are seldom turmed o
or off. Instead, they can change by some fold, either up- amdeegulated, to make a
physiological payoff. As a first approximation, Booleanatization has long been in-
troduced to reconstruct the genetic regulatory networkdisegted graph[11] and was
recently adopted to model the metabolic netwérk [12]. In Baa reconstruction of the
metabolic network, each node in the graph is replaced witharyilogic gate AND or
OR. A metabolite would not cease to be existent in the netwaotk all the reactions
having that metabolite as a product are blocked, while dimradoes not take place any
more with only a single absence out of substrate metabpliteish renders the metabo-
lites Boolean disjunction, OR, and reactions conjuncti&dD as exemplified in Fig. 1.
With all nodes given an initial condition, we iterativelya® the network till the network
is settled in a fixed point.

Cumulative Lethality Score. As a way to reveal the correlation between avalanche
size and lethality, we use the index, cumulative lethaldyre (CLS), the original ver-
sion of which was introduced in the context of protein edaéityt prediction [13]. Once

a measure of lethality, say the load of each node, is propegedan make a serial list
of reactions assorted in descending order of the proposedlity measure. With the
lethality criteria determined through the viability undke single deletion of each reac-
tion, we can assign a binary lethality score, one or zero,each reaction depending on



whether it is lethal or not. Summing up the binary scores fthanfirst rank to theth
rank in the value of the proposed quantity, say, flux levelgetthe CLS, sayL.(j). If
the proposed quantity is positively(negatively) correthivith the lethalityj.e. reactions
holding high ranks are dominated by the binary lethalitye@me(zero), the normalized
CLS manifests itself as a convex(concave) curve. Otherwigds a random sequence
of zero’s and one’sL(j) is given by a straight line. That is, the more correlated & th
measure with the lethality, the higher curvatiifg) develops.

Results and Discussion

Flux Level versus Lethality. Under aerobic condition with glucose as a unique external
carbon source we identify 210 (19.7%) lethal reactions out of 1064, tmey& blockade

of which suffocates the biomass production. It is similafraxction to the essential
fraction of S. cerevisiae genome, 18.7%15, 156, 117].

The flux distribution in the wild-type metabolic network limvs a power-law in
Pareto’s form,P(¢) ~ (¢ + ¢o)~*. Metabolic traffic is concentrated along a few ‘su-
perhighway’ reactions, while the vast majority of reacti@me in charge of only a small
flux [L8]. In the meantime, inspired by the roles the mainrate principal roads, or
backbones play in blood circulation, transportation, dad@mmunications, we exam-
ine the possibility that the flux level should reflect the &ity of each reaction. Fig. 2
shows that the plausible correspondence between flux leddieghality is a mere con-
jecture to prove not true. In other words, there is no coti@taat all between those
guantities, and high flux itself has nothing to do with thén&dity of a reaction, which
obviously contradicts our intuition. We also investigdte flux redistribution profile
upon deletion of a high-flux reaction. Reaction fluxes arestabuted either locally or
globally. Here, by local, we mean the case that very few reast having almost zero
flux in the wild type, fully take over the flux of the reactionlei®d. However, in the
global redistribution, the flux of the removed reaction iargld over a large number of
reactions to keep optimal biomass production.

Avalanche Size versus Lethality. In the Boolean reconstruction of tBecoli metabolic
network, 41 lethal reactions are identified, which are a@idéin FBA also. It is no won-
der, if we consider that lethality in binary scheme is miniarad more stringent than in
the weighted version of FBA. To quantify the effect of a serglbde deletion, we define
the avalanche size of each reaction, in the Boolean schestiee amumber of reactions
subsequently turned off on account of targeted removalaifrémction.

As shown in the inset of Fig. 3, the avalanche size distrdvutor E. coli metabolic

2Throughout the numerical experiments, acetate(ace)aatptoglutarate(akg), glucose(glc), glyc-
erol(glyc), lactate(lac-L, lac-D), malate(mal-L), pyate(pyr), and succinate(succ) are used as the carbon
sources, for each of which, we also control the oxygen uptatee Though the lethality of a reaction
does depend on which are used as carbon sources, acrossiigiengely preserved. For details of the
nutrient-dependent results, s&gporting Information.



network also displays a power law behavior with a fat tailpiyng there exist a few
reactions whose deletion triggers a large destructiveaacale cascade in metabolic
reaction. In mathematical aspects, at criticality, thediste an infinite spanning cluster
enough to reach the ultimate destination, biomass. Thasamawhe size could be useful
to find lethal reaction. Indeed, the reaction which generatbigger avalanche size is
more likely to be lethal as seen in the CLS plot (main paneligf 8).

One may want to check the possibility that nearer nodes tdibmass reaction
should be liable to be lethal. However, of the 374 distineictns that produce the
substrates of biomass reaction, only 13 of them are letliatiBoolean scheme, making
the identification of lethal reactions nontrivial—proxiyio the biomass reaction has
nearly nothing to do with the lethality of a reaction.

The notion of the avalanche in the network can be extendedetd-BA scheme,
where the avalanche size of a reaction is defined as the nuwhlesctions whose flux
levels under its knockout differ from those in the wild typ&ctually, we used three
different criteria of the avalanche: (i) reactions are netutned on or off, (i) flux level
change exceeds an arbitrary cutoff value, and (iii) frawlaechanges in flux exceeds the
cutoff value. There is, however, little difference among thfferent counting schemes.
Fig. 4, drawn by using the first criterion above, reveals thgeace of correlation be-
tween the flux level and the avalanche size both in the Boateaeme and in FBA,
which is consistent with the fact that flux level is irrelevémassessing lethality.(Fig. 2)

Due to the small-world-ness of the complex network, locatypbations are liable
to propagate to the whole network leading to the sharing @d Javhich underlies the
system-wide high flexibility. At the same time, because efdbale-free-ness, avalanche
cascade can either be long-ranged by making a large numipexdes bear parts of the
‘expenses’ or be absorbed at a short distance from the sofipagturbation, depending
on the detailed functional characteristics of the reactiomther words, the response to
single deletion perturbation of a single reaction are teeidie to definitely predict how
they would be, and so they can be predicted in a probabiligtic[19]. Identification of
lethal reactions in metabolic network can be viewed in theeséooting. The effects of
a node removal or a gene deletion are largely negligible dsaenywhich is manifested
by the dominance of nonlethal reactions. However, even @a&tion is not lethal, its
potential damage to the network varies. It is this insufficiein lethality assessing that
raises the need for the knowledge of synthetic lethals iméxt section.

Synthetic Lethality in Metabolic Network. The close genetic relationships between
genes which underlie the functional buffering has beencatam with the notion of syn-
thetic lethality. It has been assessed in a high-throughpaner by the synthetic genetic
array(SGA) analysis [15]. Likewise, analysis of multigleletion mutants in genome-
scale metabolic network may shed light on novel topolodieatures of backup path-
ways leading to the robustness. In the restricted level ddbmdism, such relationships
can be revealed more clearly by performing the double re@adtihockout experiments,



which can be easily performeaa silico. Furthermore, such metabolically synthetic
lethal pairs identified allow us to track the backup pathwexslicitly and to visualize
the precise microscopic origin from which the metabolicifdity arises.

When the glucose is used as a carbon source in aerobic amdid synthetic lethal
pairs are identified (Table 1). The relatively small numbgsynthetic lethal pairs sug-
gests the low density of backup pathways for a given speaficlition in the metabolic
network and is in accordance with the case of the yéast [2&8jorg these, 33 (60%)
pairs are involved in the same subdivision of the reactidegmies. As expected, most
of those homofunctional synthetic lethals usually workres‘simple’ backup pathway:
One of the pair is not used in the wild type at all but it almashpletely takes over the
flux of the blocked reaction (64%) as depicted in Fig. 5(ajerestingly, the homofunc-
tional synthetic lethals of the other type, for which botle tieactions are operational
in the wild type, are mostly involved in the two subsystemshef pentose phosphate
cycle and threonine-lysine metabolism. Excluding thesgéqaar cases, 91% of homo-
functional synthetic lethals are simple, while, for theestB2 heterofunctional synthetic
lethals, only 9 (41%) of them are the simple backup pathwéaysotal, 25 pairs were
both operational in the wild type and the remaining 30 aregokin one used and one
unused in the wild type.

We also study the synthetic lethality in the Boolean schedmthe Boolean scheme,
37 pairs of synthetic-lethal doublets are identified in #iddito 41 lethal singlets. Then,
we focus on the functional categories lethal reactionsrigeto. In Fig. 6, it's noteworthy
that cell envelope biosynthesis dominates (78%) all therataction categories under
single knockouts in the Boolean scheme, which means lackd{up pathways, while
the synthetic lethals are scattered throughout diversgtifumal categories.

Conserved across both the network scheme is the proximitiieotwo reactions
constituting a synthetic-lethal pair. Fig. 5(c) illuseatthe distance distribution for the
synthetic-lethal reaction pairs, around 65% of which as jwo step apart sharing
common metabolites, and over 95% of which are within foupst€onsidering that an
arbitrary pair of reactions are connected in two steps wighprobability 30%, synthetic
lethals are highly lumped with each other in the metabolactien network. Whether
the analytical scheme is Boolean or FBA, long-ranged casitplof synthetic lethals
through the intermediary of a ‘filamentary’ single pathwielin Fig. 5(b) comprises
only a small fraction5%) of synthetic-lethal pairs, and is rather an excepticnak.

Another important outcome regarding synthetic lethaktglready shown in Fig. 3,
where we measure the avalanche size of the syntheticaliglldbublets and triplets
in addition to that of the singlets. Synthetic-lethal muiktts give rise to even higher
correlation of their avalanche size with the lethality. ffeet, robustness in metabolic
network stems from redundancy in branched and parallem@gth. Conversely, lack
of reaction pathways, whether it is due to the unique biocbanmature or to the de-
fects in pathway database, lead to vulnerability. Hence,nttore we know about a
reaction pathway, the less probable it should contain ledgtions. In particular, we



cannot completely rule out the latter possibility: Accuated bias in molecular biol-
ogy research, if any, might be crucial to our result that gengathways across the
species, such as the citrate cycle or the glycolysis patewsve very few lethal reac-
tions (Fig. 6). However, at least f&. coli, one of the best known bacteria yet studied,
there are no good reasons to suspect such a bias. Moreovemalytical results are
compatible with the fact that a wide-spread strategy ofnaictiobials is acting against
cell wall synthesis(fosfomycin, cycloserine) or integfiysozyme). Rather to be sup-
posed is that the more important a reaction is, the bettditéed its backup pathways
have been during evolution.

Summary and Outlook

Systematic deletion study in a genome-wide view of modehoigms help reveal the
organizing principles of the metabolic network and may shgit on how the selec-
tion has been embodied at the network levels, and espetialyecent controversy
surrounding the causes and evolution of the enzyme disp#itg§20]. As an index
guantifying lethality in the graph-reconstructed metabaction network, we propose
the avalanche size of each reaction, the number of ‘deadtiogs due to the knockout
of that reaction or its related gene products to show an evae nemarkable interde-
pendence than various measures yet proposed. By ideigtisyinthetic lethals or lethal
multiplets in the genome-scale metabolic network undetrotiad environments, we
see the emergence of new phenotypes supported by rich baekbways, which is
shared by diverse levels of biological networks. Studiesnoittiple deletion mutations
in metabolomic interaction network can also be applied toina metabolomic varia-
tions, reminiscent of single-nucleotide polymorphisnvjmyg rise to practical buffering
or phenotypic robustness under targeted mutatiods [1%2)1,Furthermore, if we in-
corporate network analyses on metabolism with the geneiproeaction associations
by including the other sectors of intra- and inter-cellub@tworks, it can be used in
designing new microorganismal strains on the computey toelyond the reductionist
perspectives.
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Figures & Tables

Figure 1: A subgraph of the citrate cycle i coli metabolic network. In Boolean
scheme, metabolites(ellipses) are treated as Booleamdign(OR), while the reac-
tions(rectangles) as conjunction(AND). If this graph wisa@ated, though actually not
the case, from the other reactions and metabolites, thebwldtec oa would be no more
supplied only when both the reactioB8COAS andCS are blocked. On the other hand,
the reactionAKGDH would not be operational when either of the metaboldea or
akg is knocked out. In this hypothetical subnetwork severethftbe other part, bold
red arrows indicate blocked reaction paths due to the kndgakdhe reactiorCS, which
has the avalanche size three, number of red rectangles.
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Figure 6: Classification of lethal and synthetic-lethalctems according to the func-
tional categories. Frequencies are normalized by totalbeurof lethal singlets and
doublets in both the Boolean and FBA scheme, respectively.
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Reaction | Reaction Il Category | Category || 1, wild P11, wild

ASNS2 ASNS Alanine, aspartate metabolism 0.298933 0.0000
ALAR ALARI Alanine, aspartate metabolism " 0.072057 0.0000
PPC MALS Anaplerotic reactions " 3.519873 0.000000
PPC ICL Anaplerotic reactions " 3.519873 0.000000
DKMPPD2 DKMPPD Arginine, Proline Metabolism " 0.009138 00000
ORNDC ARGDC Arginine, Proline Metabolism " 0.054826 0.0000
ORNDC AGMT Arginine, Proline Metabolism " 0.054826 0.00000
GLUDy GLUSy Glutamate metabolism " -10.86474 0.000000
KAS15 KAS14 Membrane Lipid Metabolism " 0.41942 0.000000
ADK ADK3 Nucleotide Salvage Pathways " 3.284564 0.000000
RNTR2 RNDR2 Nucleotide Salvage Pathways " 0.033157 0.00000
RNTR2 NDPK5 Nucleotide Salvage Pathways " 0.033157 0.00000
RNTR NDPK8 Nucleotide Salvage Pathways " 0.032243 0.000000
RNDR3 RNTR3 Nucleotide Salvage Pathways " 0.033157 0.00000
NDPK7 RNTR3 Nucleotide Salvage Pathways " 0.033157 0.00000
NDPK ADK3 Nucleotide Salvage Pathways " 1.045572 0.000000
GARFT GART Purine, Pyrimidine Biosynthesis " 0.623856 @000
DHORD5 DHORD2 Purine, Pyrimidine Biosynthesis " 0.411327 .000000
o2t SUCCt2b Transport, Extracellular " 20.00000 0.000000
Plt2r Plabc Transport, Extracellular " 1.190038 0.000000
TRPS3 TRPS Tyrosine, Tryptophan, Phenylalanine Metafolis " 0.070490 0.000000
RNDR RNTR Nucleotide Salvage Pathways " 0.269780 0.032243
ADK NDPK Nucleotide Salvage Pathways " 3.284564 1.045572
RPE TKT2 Pentose Phosphate Cycle " 5.716916 2.573754
RPE TKT Pentose Phosphate Cycle " 5.716916 3.143163
RPE TALA Pentose Phosphate Cycle " 5.716916 3.110267
TALA TKT2 Pentose Phosphate Cycle " 3.110267 2.573754
TALA TKT Pentose Phosphate Cycle " 3.110267 3.143163
TKT TKT2 Pentose Phosphate Cycle " 3.143163 2.573754
GND TKT2 Pentose Phosphate Cycle " 10.42057 2.573754
GND RPE Pentose Phosphate Cycle " 10.42057 5.716916
THRAr THRS Threonine, Lysine Metabolism " -0.26978 0.403810
THRAr HSK Threonine, Lysine Metabolism " -0.26978 0.405103
ORNDC UREAt Arginine, Proline Metabolism Transport, Extedlular 0.054826 0.000000
ORNDC EX_urea Arginine, Proline Metabolism Exchange o8z 0.000000
GALUI GALU Cell Envelope Biosynthesis Alternate Carbon Mblism 0.025847 0.000000
FUM SUCCt2b Citrate Cycle (TCA) Transport, Extracellular .3@8573 0.000000
FRD2 DHORD2 Citrate Cycle (TCA) Purine, Pyrimidine Biosyasis 0.411327 0.000000
MTHFD GART Folate Metabolism Purine, Pyrimidine Biosynshe 1.365196 0.000000
MTHFC GART Folate Metabolism Purine, Pyrimidine Biosyrglse 1.365196 0.000000
CBMK CBPS Putative Arginine, Proline Metabolism 0.77814 0.000000
VALTA VPAMT Valine, leucine, isoleucine metabolism Alarenaspartate metabolism -0.524765 0.000000
SUCD1i PPC Citrate Cycle (TCA) Anaplerotic reactions 0884 3.519873
FUM PPC Citrate Cycle (TCA) Anaplerotic reactions 1.368573 3.519873
SuUCD4 PPC Oxidative phosphorylation Anaplerotic reaction 0.414887 3.519873
GARFT MTHFD Purine, Pyrimidine Biosynthesis Folate Methdo 0.623856 1.365196
GARFT MTHFC Purine, Pyrimidine Biosynthesis Folate Metidm 0.623856 1.365196
THRS GHMT2 Threonine, Lysine Metabolism Glycine, Serinetdmlism 0.405103 1.653370
HSK GHMT2 Threonine, Lysine Metabolism Glycine, Serine Rttlism 0.405103 1.653370
o2t PPC Transport, Extracellular Anaplerotic reactions .02000 3.519873
o2t DKMPPD2 Transport, Extracellular Arginine, Proline tdlolism 20.00000 0.009138
o2t FRD2 Transport, Extracellular Citrate Cycle (TCA) W00 0.411327
o2t GAPD Transport, Extracellular Glycolysis/Gluconeogsis 20.00000 32.61301
o2t PGK Transport, Extracellular Glycolysis/Gluconeogsn 20.00000 -32.61301
02t DHORD5 Transport, Extracellular Purine, Pyrimidinesjnthesis 20.00000 0.411327

Table 1: List of synthetic-lethal reactions. Upper(lower) two seihclude synthetic lethals
belonging to the same(distinct) functional categoriesl, thie wild-type flux of each reaction is
given in units of mm/g DW-hr.
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